Procedural Knowledge Extraction on MEDLINE Abstracts
نویسندگان
چکیده
Text mining is a popular methodology for building Technology Intelligence which helps companies or organizations to make better decisions by providing knowledge about the state-of-the-art technologies obtained from the Internet or inside companies. As a matter of fact, the objects or events (socalled declarative knowledge) are the target knowledge that text miners want to catch in general. However, we propose how to extract procedural knowledge rather than declarative knowledge utilizing machine learning method with deep language processing features, as well as how to model it. We show the representation of procedural knowledge in MEDLINE abstracts and provide experiments that are quite promising in that it shows 82% and 63% performances of purpose/solutions (two components of procedural knowledge model) extraction and unit process (basic unit of purpose/solutions) identification respectively, even though we applied strict guidelines in evaluating the performance.
منابع مشابه
Comparative experiments on learning information extractors for proteins and their interactions
OBJECTIVE Automatically extracting information from biomedical text holds the promise of easily consolidating large amounts of biological knowledge in computer-accessible form. This strategy is particularly attractive for extracting data relevant to genes of the human genome from the 11 million abstracts in Medline. However, extraction efforts have been frustrated by the lack of conventions for...
متن کاملOntology Based Corpus Annotation and Tools
With the explosion of results in molecular biology there is an increased need for IE to extract knowledge to support database building and to search intelligently for information in online journal collections. We aim to build information extraction systems from biology papers and their abstracts available from the MEDLINE database[1, 3]. As a part of a project on information extraction from the...
متن کاملFeasibility Study for Procedural Knowledge Extraction in Biomedical Documents
We propose how to extract procedural knowledge rather than declarative knowledge utilizing machine learning method with deep language processing features in scientific documents, as well as how to model it. We show the representation of procedural knowledge in PubMed abstracts and provide experiments that are quite promising in that it shows 82%, 63%, 73%, and 70% performances of purpose/soluti...
متن کاملIdentifying Sections in Scientific Abstracts using Conditional Random Fields
OBJECTIVE: The prior knowledge about the rhetorical structure of scientific abstracts is useful for various text-mining tasks such as information extraction, information retrieval, and automatic summarization. This paper presents a novel approach to categorize sentences in scientific abstracts into four sections, objective, methods, results, and conclusions. METHOD: Formalizing the categorizati...
متن کاملUsing MEDLINE as a knowledge source for disambiguating abbreviations and acronyms in full-text biomedical journal articles
Biomedical abbreviations and acronyms are widely used in biomedical literature. Since many of them represent important content in biomedical literature, information retrieval and extraction benefits from identifying the meanings of those terms. On the other hand, many abbreviations and acronyms are ambiguous, it would be important to map them to their full forms, which ultimately represent the ...
متن کامل